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Abstract
Moods are enduring affective states that we hypothesise should be affected by an individual’s

developmental experience and its current somatic state. We tested whether early-life adversity,

induced by manipulating brood size, subsequently altered juvenile European starlings’ (Stur-
nus vulgaris) decisions in a judgment bias task designed to provide a cognitive measure of

mood. We predicted that starlings from larger broods, specifically those that had experienced

more nest competitors larger than themselves would exhibit reduced expectation of reward,

indicative of a ‘pessimistic’, depression-like mood. We used a go/no-go task, in which 30 star-

lings were trained to probe a grey card disc associated with a palatable mealworm hidden

underneath and avoid a different shade of grey card disc associated with a noxious quinine-

injected mealworm hidden underneath. Birds’ response latencies to the trained stimuli and

also to novel, ambiguous stimuli intermediate between these were subsequently tested. Birds

that had experienced greater competition in the nest were faster to probe trained stimuli, and it

was therefore necessary to control statistically for this difference in subsequent analyses of the

birds’ responses to the ambiguous stimuli. As predicted, birds with more, larger nest competi-

tors showed relatively longer latencies to probe ambiguous stimuli, suggesting reduced expec-

tation of reward and a ‘pessimistic’, depression-like mood. However, birds with greater

developmental telomere attrition—ameasure of cellular aging associated with increased mor-

bidity and reduced life-expectancy that we argue could be used as a measure of somatic state

—showed shorter latencies to probe ambiguous stimuli. This would usually be interpreted as

evidence for a more positive or ‘optimistic’ affective state. Thus, increased competition in the

nest and poor current somatic state appear to have opposite effects on cognitive biases. Our

results lead us to question whether increased expectation of reward when presented with

ambiguous stimuli always indicates a more positive affective state. We discuss the possibility

that birds in poor current somatic state may adopt a ’hungry’ cognitive phenotype that could

drive behaviour commonly interpreted as ‘optimism’ in food-rewarded cognitive bias tasks.
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Introduction
In humans, there is substantial epidemiological evidence that various forms of early-life adver-
sity are associated with an increased probability of developing mood disorders such as anxiety
and depression later in life [1–3]. However, rather less is currently known about the proximate
and ultimate explanations for this relationship. Moods can be defined operationally as “rela-
tively enduring states that arise when negative or positive experience in one context or time
period alters the individual’s threshold for responding to potentially negative or positive events
in subsequent contexts or time periods” [4]. The function of mood may be to integrate infor-
mation about the recent state of the environment and the current physical condition of the
individual in order to adaptively tune decisions about the allocation of behavioural effort
[4–8].

Viewing moods as reflecting the adaptive adjustment of thresholds for responding to the
possibility of positive and negative events potentially sheds some light on how and why early-
life experience should affect adult moods. According to signal detection theory [9], the optimal
threshold for responding to an ambiguous stimulus potentially signalling a meaningful event is
influenced by two factors: the actual probability of the event occurring, and the relative costs of
the two types of errors the individual can make, namely failing to respond to an event that
occurs (a false negative decision) and incorrectly responding when there is no event (a false
positive decision) [5]. It is a reasonable assumption that both of these factors could be influ-
enced by an individual’s developmental experience, and moreover that such plasticity could be
adaptive. The developing individual is exposed to a specific pattern of rewarding and punishing
events and could use this information to estimate the probabilities of reward and punishment
occurring in its future environment. Such a strategy would be adaptive if the features of envi-
ronments are auto-correlated and change slowly relative to lifespan [10]. Moreover, the quality
of the developmental environment is likely to influence the physical quality of the body an indi-
vidual is able to develop, and this somatic state variable could influence the relative costs of
response errors independent of the current environment in which an animal finds itself. For
example, an animal that is less fast or less strong is more likely to succumb to predation if it
fails to detect a predator and respond appropriately. Hence, all else being equal, predator detec-
tion thresholds should be adjusted to make false negative decisions less likely in animals in a
poor somatic state [5]. Henceforth, we refer to this latter effect arising from the differential
costs of response errors as an individual’s ‘vulnerability’ [5]. In general, we predict that it
should be optimal for animals with higher punishment probabilities and/or higher vulnerabili-
ties to set lower thresholds for responding to potential threats, with the consequence that they
will exhibit an anxiety-like phenotype characterised by higher expectation of punishment in
the face of ambiguous information [5]. Similarly, we predict that it should be optimal for ani-
mals with lower reward probabilities to set higher thresholds for responding to potential
rewards, with the consequence that they will exhibit a depression-like phenotype characterised
by lower expectations of reward in the face of ambiguous information [4]. Thus, we propose
that the observed relationship between early-life adversity and subsequent negative moods
could be the result of an evolved response that adapts the young animal to perform optimally
given either the environment in which it expects to find itself and/or the constraints of the
body it has been able to develop.

Here we use the European starling (Sturnus vulgaris) as an animal model in which to test
experimentally the effects of manipulating biologically realistic aspects of developmental expe-
rience and resulting somatic state on subsequent mood. Starlings are a long-lived, non-domes-
ticated passerine bird species commonly used in behavioural research [11,12], for which we
have established manipulations of early-life adversity [13,14] and cognitive measures of mood
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[15–17]. For the current study, we had available a cohort of juvenile birds that had previously
been subjected to a brood-size manipulation [18] in which pairs of wild focal siblings matched
for weight were cross-fostered into nests where they faced either high (total of 7 chicks initially)
or low (total of 2 chicks) competition for 12 days spanning the period during which most
growth occurred (post-hatching day 3 to day 15, subsequently d3-d15). We have previously
shown that this manipulation caused differences in early growth, with the chicks from high-
competition broods being on average smaller than chicks from low-competition broods during
the period of the manipulation. This difference occurred because within the high-competition
nests, some chicks lost out in the increased competition for food [18]. Although these differ-
ences in weight rapidly disappeared once the chicks were released from the manipulation onto
ad libitum food, there were enduring differences in the length of telomeres measured from the
birds’ erythrocytes. Specifically, telomere attrition over the developmental period was predicted
by the number of competitors above the focal chick in the brood hierarchy of size (i.e. heavier
than the focal chick) on d15: chicks with more heavier competitors on d15 experienced greater
developmental telomere attrition and this difference was still evident at d55 [18]. This result is
relevant to the current study because telomere length in humans and birds measured from
blood prospectively predicts health and life-expectancy [19–24], and is therefore emerging as a
plausible candidate measure of somatic ‘state’ as defined by behavioural ecologists [25]. On the
basis of these results, it is likely that the number of heavier competitors in the nestling phase
affected the developing birds’ experience of the probabilities of reward and punishment, as well
as producing enduring changes in their somatic state that affected their vulnerability. Our aim
was to investigate whether the birds differed in mood as predicted by the theory described
above.

We measured mood using a cognitive bias task [26,27]. Such tasks are designed to assess
response thresholds in the face of ambiguous information about potential punishment or
reward, and are hence ideally suited for testing the theoretical framework for mood outlined
above [4]. The literature exploring the use of cognitive biases to assess mood in non-human
animals has focused on tasks that measure judgment biases in which animals are asked to inter-
pret ambiguous information (for reviews of empirical papers using the cognitive bias approach
see [27–30]). In a typical judgment bias task, such as that designed by Bateson and Matheson
for starlings [15], subjects are initially trained to associate one stimulus—positive—with a
high-valued reward and another stimulus—negative—with either punishment or lack of
reward. Once the subjects have acquired the discrimination between the positive and negative
stimuli, they are subsequently tested by presenting them with ambiguous stimuli intermediate
between the two trained stimuli. In the test trials, animals that respond to the ambiguous sti-
muli similarly to the positive stimulus are interpreted as displaying a high expectation of
reward in the presence of ambiguous information, and hence an ‘optimistic’ cognitive style
indicative of a positive mood. In contrast, animals that respond to the ambiguous stimuli simi-
larly to the negative stimulus are interpreted as displaying a higher expectation of punishment
or lower expectation of reward, and hence a more ‘pessimistic’ cognitive style indicative of a
more negative mood. Such cognitive bias tasks are currently regarded as the gold standard for
assessing moods in non-human animals because they test clear, a priori predictions about the
relationship between behavioural decisions and mood that emerge from a general operational
definition of mood [4,8,27]. Although cognitive bias tasks have been used to assess the effects
of various acute and chronic manipulations of adult animals in a variety of species, they have
not thus far been extensively used to explore lasting effects of past developmental experience
(for a couple of exceptions in rats see [31,32]).

The aim of the current experiment was to ask whether our brood-size manipulation in nes-
tling starlings led to differences in cognitive biases in the juvenile birds indicative of altered
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mood. We hypothesised that differential competition early in development would have altered
the probabilities of both reward and punishment experienced by the birds. Chicks at the bot-
tom of the hierarchy in high-competition nests received less food (lower reward probabilities)
and this was plausibly coupled with greater stress from competition with nest mates (higher
punishment probabilities). We also hypothesised that shorter telomeres in the juvenile birds
would be indicative of poorer somatic state, and hence increased vulnerability. Together these
hypotheses suggest that birds from the bottom of the hierarchy in high-competition nests and
birds with shorter telomeres (note that these are not always the same birds, because the rela-
tionship between number of heavier competitors and telomere attrition is not perfect) should
have reduced expectations of reward and increased expectations of punishment in the face of
ambiguous information, indicative of depression-like and anxiety-like moods respectively. If
these assumptions are correct, then we predict that birds from high-competition nests should
display more pessimistic decisions than birds from low-competition nests when tested on a
cognitive bias task. Furthermore, we expect the relationship to be stronger when we use num-
ber of heavier competitors as the predictor variable, since this seems to capture more of the var-
iation in relevant developmental experience than brood size.

Methods

Ethics statement
Our study adhered to the ASAB/ABS Guidelines for the Use of Animals in Research, and was
approved by the local ethical review committee at Newcastle University. It was completed
under UK Home Office project licence number PPL 60/4073, and removal of starlings from the
wild was authorised by Natural England (licence number 20121066). After the completion of
the current experiment the birds were retained in the laboratory for further studies before
being permanently rehomed to a large outdoor aviary in July 2013. To maximize welfare during
experiments, birds were tested in home cages rather than being repeatedly caught, as described
below. Birds were tested for 4 hours per day and had ad libitum food and baths at other times.
Between experiments, all birds lived in social groups in large free-flight aviaries enriched with
foraging substrate, multiple perches, and baths.

Subjects
Subjects were 31 European starlings (15 males and 16 females) from a cohort of chicks hatched
in the wild (in nest boxes located on five farms in Northumberland, UK: approximately 55˚N
2˚W) in May 2012. Whilst still in the wild, the chicks were subjected to a brood size manipula-
tion described in detail elsewhere [18] but summarised briefly below.

Using our nest box colonies of starlings, we identified sets of nests in which chicks hatched
on the same day. We weighed all chicks on the day after hatching (d2), and selected donor
nests containing at least four chicks of approximately the same weight. Within each donor
nest, the four chicks with the most similar weights became our four focal chicks. On d3, we
moved a randomly chosen pair of each set of focal chicks to a host nest where they would be
the only nestlings (brood size of two: the low competition treatment), whilst the remaining pair
were moved to a different host nest in which we additionally placed five competitors (brood
size of seven: the high competition treatment). Nests of seven chicks are within the observed
range of natural variation in this population of starlings, and this manipulation has been used
previously without causing chick mortality [14]. The additional competitors in the broods of
seven were not siblings of the focals, and also were not in their natal nests. In this way, we cre-
ated nine sets of four focal siblings (36 birds), but one low competition brood was abandoned
on d4 and the chicks died leaving 34 focal birds. In high competition broods, where a non-focal
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competitor died within the first three days post-manipulation, we replaced the dead individual
with another chick of approximately the same weight. Due to mortality at later stages, one of
the high competition broods contained only six live chicks on d15, and one nest 5. We weighed
the focal chicks on d4, d7, d11 and d15. In addition, on d15, we weighed all of the non-focal
competitor chicks from the large broods. The brood size manipulation created continuous vari-
ation in the number of larger nest competitors chicks faced on d15 (0 to 6).

On d15, the 34 surviving focal chicks were taken from their nests and reared in captivity.
Once in captivity, birds from the two treatments were mixed together, and housed in covered
buckets until fledging at around d21. Before fledging birds were fed to satiation on commercial
poultry-based cat foods mixed with apple sauce and added vitamins and minerals (full details
are provided in Feenders and Bateson [33]. After fledging, birds were group-housed, initially in
cages and later (around d30 onwards) in large indoor aviaries (215 × 340 × 220 cmWDH;
~18°C; 40% humidity; 13L:11D light cycle). The birds were provided with clean drinking water
and fed ad libitum on commercial poultry-based cat foods, fruit, commercial grain-based chick
starter crumbs, live mealworms (Tenebrio molitor) and dried insect pate (Orlux). They were
additionally provided with environmental enrichment in the form of water baths, wood chips
for probing and ropes and hanging cardboard boxes for perching and roosting. Birds were
weighed in captivity at d20 and d55 (± 2 days). Tarsus length was measured at d55. One bird
died after fledging but before d55. Of the remaining 33 birds 31 served as subjects in the cur-
rent study; the two birds not used were the pair for which we did not have a pair of siblings
from the low competition treatment.

Measurements of cognitive bias took place when the birds were independent fledglings
starting on a mean of d94 post-hatch. Three replicates of 8 birds and one replicate of 7 (each
comprising 2 genetic families) were sequentially caught from the aviary and moved to our
experimental laboratory (~18°C; 40% humidity; 13L:11D). Training started on d68 (± 2 days)
for replicate 1, d80 (± 2 days) for replicate 2, d96 (± 2 days) for replicate 3 and d119 (± 2 days)
for replicate 4. Birds were housed in individual cages that served both for testing and as their
home cages for the duration of the cognitive bias experiment. The cages measured 100 x 45 x
45 cm (WDH) and were furnished with two perches and a water bath. Water was always avail-
able ad libitum. Food was available ad libitum other than during experimental sessions, which
ran approximately 0800–1200 daily, when food bowls were removed from the cages. Birds
were in auditory contact with each other throughout the period in cages and were visually iso-
lated using curtains for the period of the daily experimental sessions. Each replicate remained
in the cages for approximately 2 weeks after which the birds were returned to the aviary and
were replaced with the next two families.

Birds were weighed when they were caught for transfer to individual cages at the start of the
experiment. As a measure of body condition at the start of the experiment we derived residual
body weights from the regression equation: Weight = 1.717�Tarsus + 15.437 obtained from all
31 birds on d55.

Cognitive bias task
Task overview. The task was based on the go/no-go judgment bias task developed by Bate-

son and Matheson [15] in which individual starlings were presented with a single Petri dish
containing a mealworm covered with a circular card lid. The bird was required to make a deci-
sion about whether to approach and remove (i.e. probe) the lid during a time-limited presenta-
tion of the dish. The colour of the lid provided a discriminative stimulus indicating the
palatability of the hidden worm. Birds were initially trained to discriminate two shades of grey
lid, one associated with a palatable worm (POS), and the other associated with a noxious worm
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(NEG), and were subsequently tested with ambiguous lids intermediate between the two
trained achromatic colours, presented in extinction. The achromatic colours used were 20%,
30%, 40%, 50% and 60% grey, printed in black on white card. Each bird was assigned one
extreme (i.e. 20% or 60%) as the POS stimulus and the other as the NEG stimulus; colour
assignments were the same within a replicate, but counterbalanced across replicates, so two
replicates had 20% grey as POS and two replicates had 60% grey as POS. The three intermedi-
ate grey shades were used as the ambiguous stimuli in the test trials. Palatable mealworms were
injected with 0.02ml water and painted externally with water, whereas noxious mealworms
were injected with 0.02ml of 4% quinine sulphate solution and painted externally with the
same solution. The task comprised four phases: lid-flipping training, discrimination training,
partial reinforcement training and cognitive bias testing.

Lid-flipping training. The aim of this phase was to train the birds to approach and
remove a cardboard lid from a Petri dish to access a palatable mealworm hidden beneath. Birds
were food deprived for one hour prior to the start of training to increase their motivation to
approach the dish. Training started with the POS lid placed adjacent to a dish containing two
mealworms; the dish was presented for 10 min during which the experimenter left the room.
In the course of subsequent training the number of worms was reduced to one, the lid was
placed so that it gradually covered progressively more of the dish, the presentation time was
reduced to 1 min and the experimenter stayed in the room hidden behind a curtain. In the final
stage, birds were given sessions of 8 sequential trials separated by an inter-trial interval (ITI) of
5 min in which the lid fully covered the worm and the dish was presented for 1 min. Birds were
required to flip the lid and eat the worm on 6 out of 8 trials before they were allowed to prog-
ress to discrimination training.

Discrimination training. The aim of this phase was to train the birds that one shade of
lid, the positive stimulus (POS), was associated with a palatable mealworm and another shade
of lid, the negative stimulus (NEG), was associated with a noxious mealworm. Birds should
probe POS lids and refrain from probing (or be slower to probe) NEG lids. No food deprivation
was necessary in this or subsequent phases of the experiment; indeed birds were pre-fed with
12 mealworms in the 30 mins prior to the experimental sessions in an attempt to reduce their
motivation to probe lids. Birds received one session of 16 trials per day with an ITI of 5 min-
utes. In all trials the lid completely covered a mealworm and the dish was presented for 1 min
before being removed from the cage. In 8 trials the POS lid covered a palatable mealworm as in
lid-flipping training. In the other 8 trials the NEG lid covered a noxious mealworm. Trials were
presented in a pseudorandom order with the constraint that all sessions started with a POS
trial and no more than two trials of the same type occurred sequentially. To assess whether
birds had learnt the discrimination, each day we compared the individual birds’ latencies to
probe in POS and NEG trials. The emergence of significant discrimination during discrimina-
tion training was established by daily comparing each bird’s latencies to probe POS and NEG
lids using Mann-Whitney U tests. Non-parametric tests were chosen for these analyses due to
very small sample sizes. The criterion for allowing a bird to progress to partial reinforcement
was that it was significantly faster to probe POS lids than NEG lids in two sessions.

Partial reinforcement training. The aim of this phase was to train the birds that not all
trials were reinforced or punished in order to slow down extinction of lid flipping in the subse-
quent cognitive bias tests. Birds received one session of 16 trials comprising: 4 POS trials rein-
forced with a palatable worm (exactly as in discrimination), 4 POS trials with no worm, 4 NEG
trials punished with a noxious worm (as in discrimination) and 4 NEG trials with no worm.
The ITI was 5 mins. The trials were presented in a pseudorandom order with the constraint
that the session started with a reinforced POS trial and no more than two POS or NEG trials
occurred sequentially.
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Cognitive bias testing. The aim of this phase was to measure the birds’ response to novel,
ambiguous stimuli (Near POS, MID and Near NEG) intermediate between the two trained sti-
muli (POS and NEG). Birds received four daily sessions of 18 trials, each session comprising: 4
POS trials reinforced with a palatable worm, 2 POS trials with no worm, 2 Near POS trials with
no worm, 2 MID trials with no worm, 2 Near NEG trials with no worm, 2 NEG trials with no
worm and 4 NEG trials punished with a noxious worm. The ITI was 5 minutes. The trials were
presented in a pseudorandom order with the constraint that the session started with a rein-
forced POS trial and no more than two trials of the same type occurred sequentially. The main-
tenance of significant discrimination of POS and NEG during judgment bias testing was
checked by comparing each bird’s latencies to probe POS and NEG lids over the four days of
testing using Mann-Whitney U tests.

Data collection. Data were recorded by an observer (MB, ME, GC or DN) in an adjacent
room watching a live video showing an aerial view of the 8 bird cages (videos of all sessions
were also recorded for subsequent inter-observer reliability checking). During data collection
the experimenters and observers were blind to the brood-size treatment group to which each
bird belonged (birds were individually identified by the combination of coloured leg rings they
wore) to prevent experimenter bias. In all phases of the experiment we used a stopwatch to
record the latency of the bird to probe the lid (defined as touching it with its beak) and to eat
the mealworm if one was present in that trial. The latency began when the experimenter’s
hands exited the cage. If the bird did not probe the lid (a no-go response) or did not eat the
mealworm within the specified time limit, the latency was scored as the maximum plus 1 s (i.e.
61 s in discrimination training and judgment bias testing). Since many birds appeared unable
to inhibit probing NEG cues, even after several days of training (see results), we used latency to
probe, rather than whether a probe took place or not, as our dependent variable in the cognitive
bias test.

Developmental telomere attrition
Telomere lengths on d4, d15 and d55 were measured from erythrocyte DNA using quantitative
PCR and have been published previously [18]. Whilst the estimates of telomere length derived
from quantitative PCR are not absolute and can be affected by the presence of interstitial
repeats of the telomeric sequence, neither of these criticisms applies if longitudinal measure-
ments from the same individual are compared, as was done in the current study [34]. Due to
some failed assays, telomere length data were only available for 22 of the 30 birds included in
the current study (of these 22 birds, 11 came from each brood size treatment, meaning that
treatment did not bias the failure of the telomere assays). As a measure of developmental telo-
mere attrition we calculated D, the difference in telomere length between d4 and d55 corrected
for regression to the mean using the equation given in Verhulst et al. [35]. More negative values
of D correspond to greater telomere attrition. Since D remained weakly negatively correlated
with telomere length at d4 (Pearson correlation: r(20) = -0.16), we included telomere length at
d4 as a covariate in all analysis of the effects of D [36].

Data Analysis
Raw data from the study are available in S1, S2 and S3 Files. Data were analysed using R [37].
The R script is available on request. A criterion for significance of p< 0.05 was assumed
throughout; results with p< 0.10 are also reported and discussed as marginally non-significant
trends.

For principal component analysis (PCA) we used the R package ‘psych’ [38]. To model the
data we used general linear mixed models (GLMMs) implemented in the R package ‘nlme’
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[39]. Model estimation was by maximum likelihood, and whether parameters differed signifi-
cantly from zero was determined by testing the change in deviance when a given predictor was
excluded from the model using a X2 test.

All GLMMs included random intercepts for genetic family (since quartets of birds were sib-
lings) and also bird when repeated measures were present; when both random effects were nec-
essary, bird was nested in genetic family. Predictor variables explored in the models included:
developmental treatment (categorical: broods of 2 or 7 chicks), number of heavier competitors
that a chick had in the nest at d15 (continuous: 0–6; see Table 1), telomere attrition between d4
and d55 (D; continuous, negative values indicate more attrition), current weight at the start of
the cognitive bias experiment (continuous), current body condition at the start of the cognitive
bias experiment (continuous; larger values indicate birds that were heavier for their size), stim-
ulus valence in the cognitive bias experiment (continuous: 1–5, where 1 = NEG and 5 = POS).
Some models additionally controlled for sex (categorical: male or female), telomere length at
d4 (continuous) and average speed to probe POS and NEG (continuous; see below). We experi-
mented with adding experimental replicate (1–4) to the models as a predictor, but it did not
improve model fit, and we therefore elected to eliminate it from the final models reported in
the interests of simplicity. The fixed effects included in each model are detailed in the results
section.

For the analysis of the cognitive bias data we used the behaviour of birds in individual trials
as the unit of analysis. Our main dependent variable, latency to probe a lid, was loge-trans-
formed prior to GLMM analysis to reduce the effect of outliers. Although latencies to probe in
the cognitive bias test trials were theoretically bounded between 0 and 61 s, inspection of resid-
uals from the fitted models showed that assumptions of normality and homogeneity of vari-
ance were not violated, hence a Gaussian error structure was assumed throughout. No
adjustment was made for censoring since birds responded on or before the limit of 60 s in 78%
of the ambiguous test trials.

For the main analysis of the effects of treatment on latency to probe, we first report a model
using the data from the trained POS and NEG trials only (valences 1 and 5). The purpose of
this model is to establish whether developmental treatment predicts differences in the birds’
overall speeds of probing. We subsequently report models using the data from the ambiguous
trials only (valences 2,3 and 4), but including the birds’ average speed (latency to probe POS
and NEG) as a covariate. The purpose of these models is to establish whether our predictor var-
iables predict different latencies to probe the ambiguous stimuli in particular, once variation in

Table 1. Distribution of focal chicks with different numbers of heavier competitors at d15 in the two brood size treatments and in total.

Number of heavier competitors at d15 Number of focal chicks

Low-competition treatment (brood size 2) High-competition treatment (brood size 7) Total

0 7 (4) 3 (2) 10 (6)

1 8 (7) 4 (3) 12 (10)

2 0 1 (1) 1 (1)

3 0 1 (1) 1 (1)

4 0 0 0

5 0 2 (1) 2 (1)

6 0 4 (3) 4 (3)

Total 15 15 30 (22)

Note: the numbers in brackets give the number of birds in the subset of the data for which telomere length measures were available.

doi:10.1371/journal.pone.0132602.t001
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birds’ overall speed is accounted for (for a similar approach to the analysis of cognitive bias
data see [40]). Alternative models of the data were compared using AICc, a modified version of
Akaike’s information criterion recommended for small sample sizes [41].

Results

Measures of early-life adversity and current state
Although the birds used in the current study originated from a designed experiment in which
sibling chicks were allocated to broods of either 2 (low-competition treatment) or 7 (high-com-
petition treatment) chicks, previous analyses of the effects of treatment on chick weight gain
showed that whilst there were overall effects of treatment, these were being driven by loser
chicks in the high-competition treatment [18]. For this reason, we have argued previously that
continuous measures, such as either the number of heavier competitors that a chick had on
d15 [18,25] or its weight on d11 [42], are more precise indices of early-life adversity than sim-
ply whether a chick was in the high- or low-competition treatment.

In order to clarify which predictor variables to include in subsequent models we first
explored how the brood size treatment affected various putative continuous measures of early-
life adversity and current state. Using the data from the 30 birds for which we obtained beha-
vioural measures in the current experiment, we conducted a series of GLMMs to test the effect
of treatment on the following variables: weight at d11 (the day on which the difference in
growth of chicks from the two treatments was largest [18]), number of heavier competitors at
d15, developmental telomere attrition between d4 and d55, current weight at the start of the
cognitive bias experiment and current body condition at the start of the cognitive bias experi-
ment. In models of variables related to weight we included sex as an additional predictor
because in European starlings males are on average heavier than females. In the model of devel-
opmental telomere attrition we included telomere length at d4 in the model because we had
previously established that this explains some of the variation. The results are shown in
Table 2. Treatment had a significant effect on weight at d11 and the number of heavier compet-
itors that a chick had at d15, with chicks from the high competition treatment (broods of 7)
being lighter on d11 and having more heavier competitors on d15. Note that the latter result is

Table 2. Summary of models testing the effect of the brood size treatment on other potential continuous measures of early-life adversity and cur-
rent state.

Dependent variable Predictor(s) B ± se Χ2 P-value

Loge(No. heavier competitors+1 on d15) Treatment (7) 0.74 ± 0.22 10.30 0.001*

Weight d11 Treatment (7) -9.38 ± 2.07 15.99 < 0.001*

Sex (F) -5.77 ± 2.11 7.00 0.008*

Telomere attrition d4-d55 Treatment (7) -0.23 ± 0.20 1.38 0.241

Telomere length on d4 -0.13 ± 0.14 0.86 0.353

Current weight ~d94§ Treatment (7) 0.58 ± 1.27 0.23 0.634

Sex (F) -5.24 ± 1.31 13.59 < 0.001*

Current condition ~ d94§ Treatment (7) 1.42 ± 1.14 1.67 0.196

Sex (F) -3.49 ± 1.18 8.28 0.004*

Notes:
§Current weight/condition was measured on d68 for replicate 1, d80 for replicate 2, d96 for replicate 3 and d119 for replicate 4.

* P < 0.05. All models contain a random effect for genetic family. All models are based on the 30 birds for which we collected cognitive bias data with the

exception of the telomere attrition model, that is based on the subset of 22 birds for which we additionally had telomere length data. Where predictor

variables are categorical, parameter estimates for Treatment are for brood size 7 and for Sex are for females.

doi:10.1371/journal.pone.0132602.t002
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a direct consequence of our manipulation, because in low-competition broods (2 chicks) a
chick could only have either 0 or 1 heavier competitors, whereas in high-competition broods (7
chicks) a chick could have up to 6 heavier competitors. Although birds from high-competition
broods experienced greater telomere attrition between d4 and d55 than birds from low compe-
tition broods, the effect of treatment was not significant, repeating our previously published
findings from the same cohort of birds [18]. There was no lasting effect of the brood size treat-
ment on either current body weight or current body condition.

To explore how the above putative measures of early-life adversity and current state were
related to one another, we constructed a correlation matrix. The results are shown in Table 3.
Birds with more heavier competitors on d15 were lighter on d11, had greater developmental
telomere attrition between d4-d55 and were also lighter at the start of the cognitive bias experi-
ment (~d94). Birds that were lighter at the start of the cognitive bias experiment also had lower
current body condition (because there was little variation in adult tarsus length). However, cur-
rent body condition was not correlated with any measures of early-life adversity (neither num-
ber of heavier competitors, nor weight at d11 nor developmental telomere attrition).

Discrimination training
All birds initially successfully learned lid-flipping, though one subsequently stopped reliably
lid-flipping and never reached the criterion for progression to discrimination training. The fol-
lowing analyses are based on the 30 birds that successfully completed all phases of training, or
where telomere attrition is a predictor, the subset of 22 birds for which telomere attrition data
was available. Birds took 10.63 ± 5.13 (mean ± sd) trials to learn the lid-flipping task, where
success was defined as the bird removing a lid fully covering a mealworm within 60 s of the
start of the trial. To test whether brood size treatment predicted speed of learning we fitted a
model with number of trials to learn lid flipping as the dependent variable and treatment as a
fixed predictor. There was no effect of treatment on the number of trials taken to acquire lid
flipping (GLMM: B for high-competition treatment ± se = 0.23 ± 1.84, X2(1)< 0.02,
p = 0.896). We also found no effects of either number of heavier competitors on d15 or devel-
opmental telomere attrition (statistics not shown).

Table 3. Correlationmatrix showing how potential measures of early-life adversity and current state relate to one another.

No. heavier competitors d15 Weight d11 Telomere attrition d4-d55 Current weight ~d94

Weight d11 r = -0.7

n = 30

P < 0.001*

Telomere attrition d4-d55 r = -0.47 r = 0.32

n = 22 n = 22

P = 0.028* P = 0.146

Current weight ~d94 r = -0.39 r = 0.38 r = 0.01

n = 30 n = 30 n = 22

P = 0.034* P = 0.039* P = 0.970

Current condition ~d94 r = -0.19 r = 0.06 r = -0.15 r = 0.90

n = 30 n = 30 n = 22 n = 30

P = 0.328 P = 0.755 P = 0.506 P < 0.001*

Notes. Each cell contains: the Pearson product-moment correlation coefficient (r), the number of birds on which the test is based (n) and the P-value for

the correlation (P).

*P < 0.05.

doi:10.1371/journal.pone.0132602.t003
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In contrast to the previous occasion on which we used this task [15], most birds continued
to probe the NEG lids and some continued to eat the noxious mealworms after experiencing
them multiple times. In the final 2 sessions of discrimination training the proportions of POS
and NEG lids probed were 0.96 ± 0.18 (mean ± sd) and 0.51 ± 0.30 respectively, and the pro-
portions of worms eaten were 0.95 ± 0.18 and 0.19 ± 0.23 respectively. Based on their latencies
to probe, all 30 remaining birds successfully acquired the discrimination task. Birds took
2.03 ± 0.85 (mean ± sd) sessions to show a significant difference in their latency to probe POS
and NEG lids with a shorter latency to probe POS lids (Mann-Whitney tests, all p< 0.050). To
test whether there was an effect of treatment on discrimination learning we fitted a model with
number of sessions to acquire the discrimination as the dependent variable and treatment as a
fixed predictor. There was no significant effect of treatment on the number of sessions taken to
learn the discrimination (GLMM: B for high-competition treatment ± se = 0.37 ± 0.24, Χ2(1) =
2.34, p = 0.126). We also found no effects of either number of heavier competitors on d15 or
developmental telomere attrition (statistics not shown). Thus, there was no evidence that the
developmental experience of the birds affected their ability to learn either lid flipping or an
arbitrary, achromatic colour discrimination.

All 30 birds retained their discrimination between the POS and NEG stimuli during the
four days of cognitive bias testing. Comparing the latencies from all of the POS and NEG trials
(i.e. pooling reinforced and extinction trials) from the 4 days of testing (a total of 24 POS and
24 NEG for each bird), all birds remained significantly faster to probe POS than NEG stimuli
(Mann-Whitney tests, p< 0.050). Therefore, all 30 birds were retained in the analysis of the
cognitive bias data.

Cognitive bias testing
Effects of brood size treatment on cognitive bias. Fig 1A shows that birds from the high-

competition treatment were faster to probe all but the Near POS stimulus. Our first step was to
explore whether there was an effect of treatment on latency to probe just the trained stimuli
(POS and NEG). We fitted a model with latency to probe POS and NEG stimuli (logged) as the
dependent variable and stimulus valence (1 or 5), brood size treatment and their interaction as
fixed predictors. Valence significantly predicted latency to probe, with birds probing POS sti-
muli faster (GLMM: B for POS±s.e. = -2.07±0.07, X2(1) = 1003.91, p< 0.001). Brood-size
treatment had a significant main effect on latency to probe, with birds from high-competition
nests probing faster (GLMM: B for high-competition nests±s.e. = -0.68±0.26, X2(1) = 3.97,
p = 0.046). There was a significant interaction between valence and treatment reflecting a
greater effect of treatment on the latency to probe NEG stimuli (GLMM: B±s.e. = 0.29±0.10,
X2(1) = 8.45, p = 0.004). Since this analysis shows an effect of treatment on the latency of the
birds to probe the trained stimuli, we calculated the mean probe latency to the POS and NEG
stimuli for each bird (henceforth its ‘speed’), and used this as a covariate in the following analy-
sis of latencies to probe the ambiguous stimuli (Near POS, MID and Near NEG).

To explore whether treatment affected the birds’ response to the ambiguous stimuli in par-
ticular, we fitted a model with latency to probe ambiguous stimuli (logged) as the dependent
variable and the following fixed predictors: speed (continuous), valence (2–4), brood-size
treatment and the valence by treatment interaction. There was a significant main effect of
valence on latency to probe the ambiguous stimuli, with birds being faster to probe stimuli
more similar to POS (GLMM: B±s.e. = -0.73±0.07, X2(1) = 140.53, p< 0.001). The main effect
of treatment was not significant, but there was a marginally non-significant interaction
between valence and treatment on latency to probe, that occurred because birds from low-com-
petition nests were faster to probe Near POS cues than birds from high-competition nests
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Fig 1. Effects of developmental competition on judgment bias. (A) Latency to probe as a function of stimulus valence for birds in the two brood-size
treatments. Data are mean ± 1 s.e. latency to probe in the cognitive bias test trials. (B) The same data shown in panel A standardised so that the latencies to
probe POS and NEG are 0 and 1 respectively. This standardisation removes differences in speed to probe POS and NEG between treatments, and hence
reveals the differences in the shapes of the generalisation gradients between treatments. Note that this standardisation is for visualisation purposes only and
was not used in the data analysis (see text for details). (C) Latency to probe as a function of stimulus valence for birds at the top of the weight hierarchy in the
nest (0 or 1 heavier competitors) and birds at the bottom of the weight hierarchy (2–6 heavier competitors). Data are mean ± 1 se latency to probe in the
cognitive bias test trials. The dichotomization of the data into the groups 0–1 and 2–6, is for visualisation purposes only; all statistical analyses were
conducted using the number of heavier competitors as a continuous predictor variable. (D) The same data shown in panel C standardised so that the
latencies to probe POS and NEG are 0 and 1 respectively. Note that the standard errors shown on all of the plots in this figure give a false impression
(underestimate) of the significant differences between the groups due to the fact that birds from the same genetic family are present in both treatment groups.

doi:10.1371/journal.pone.0132602.g001
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(GLMM: B = 0.20 ± 0.10, X2(1) = 3.79, p = 0.052; Fig 1B).Thus, when overall speed is controlled
for, as predicted, there is some evidence, albeit marginally non-significant, that birds from
small broods had a higher expectation of reward in the face of ambiguous information.

Effects of number of heavier competitors on cognitive bias. In an attempt to find a bet-
ter model of the cognitive bias data we explored replacing the dichotomous treatment variable
with the related, but potentially more precise, continuous measure of early-life adversity: ‘num-
ber of heavier competitors at d15’. Fig 1C and 1D show the same data plotted in Fig 1A and 1B
but split by the number of heavier competitors at d15 (the continuous variable was divided
into two groups of 0–1 and 2–6 for presentation purposes only). Fig 1C shows that birds that
had more, heavier competitors were faster to probe stimuli at the NEG and Near NEG end of
the continuum.

Following the same analysis strategy adopted for the effects of treatment above, we fitted a
model with latency to probe the ambiguous stimuli (logged) as the dependent variable and the
following fixed predictors: speed, valence (2–4), number of heavier competitors, and the
valence by number of heavier competitors interaction. There were significant effects of speed
and valence on latency to probe the ambiguous cues (GLMM: for speed B ± se = 0.08 ± 0.01,
X2(1) = 45.50, p< 0.001, and for valence B ± se = -0.75 ± 0.07, X2(1) = 140.53, p< 0.001).
The main effect of number of heavier competitors was not significant (GLMM: B ± se =
-0.16 ± 0.07, X2(1) = 0.21 p = 0.644), but there was now a significant interaction between
valence and number of heavier competitors on latency to probe, that occurred because birds
with fewer heavier competitors were faster to probe both MID and Near POS cues than birds
with more heavier competitors (GLMM: B = 0.07 ± 0.02, X2(1) = 8.14, p = 0.004; Fig 1D). The
fit of this latter model was better than the previous model presented above containing treat-
ment as a predictor in place of number of heavier competitors (reduction in AICc of 4.261).
Thus, the patterns are similar with treatment and number of heavier competitors as predictors,
but number of heavier competitors captures more of the variance in birds’ latencies to probe
ambiguous stimuli. As predicted, birds from broods where they faced fewer heavier competi-
tors had a higher expectation of reward in the face of ambiguous information.

Effects of developmental telomere attrition on cognitive bias. Since we have previously
shown that number of heavier competitors at d15 predicts developmental telomere attrition in
the same group of birds, we next explored whether developmental telomere attrition statisti-
cally mediates [43] the relationship between number of heavier competitors and cognitive bias
established above. Developmental telomere attrition was correlated with number of heavier
competitors, but not so strongly as to preclude entering both predictors into the same model
and their having separate effects (r = -0.47, see Table 3). As previously, the dependent variable
was latency to probe the ambiguous stimuli (logged). The fixed predictors initially included
were: speed, valence (2–4), heavier competitors, the valence by heavier competitors interaction,
telomere length at d4, developmental telomere attrition (D) and the valence by developmental
telomere attrition interaction. Since the valence by telomere attrition interaction was not signif-
icant, we excluded this interaction from the final model for which we present parameter esti-
mates below. Speed significantly predicted latency to probe with birds that had faster mean
speeds probing POS and NEG also probing ambiguous stimuli faster (GLMM: B ± se =
0.07 ± 0.01, X2(1) = 31.53, p< 0.001). Valence also significantly predicted latency to probe
with birds probing stimuli more similar to POS faster (GLMM: B ± se = -0.70 ± 0.08, X2(1) =
89.82, p< 0.001). Number of heavier competitors was not significant, but the interaction
between valence and number of heavier competitors reported above remained significant
(GLMM: B ± se = 0.08 ± 0.03, X2(1) = 7.94, p = 0.005). Telomere length at d4 was marginally
non-significant, with birds with shorter telomeres at d4 tending to probe faster (GLMM:
B ± se = 0.24 ± 0.12, X2(1) = 3.23, p = 0.072). Telomere attrition, D, significantly predicted
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latency to probe, with birds that had suffered greater developmental telomere attrition probing
ambiguous stimuli faster (GLMM: B ± se = 0.41 ± 0.20, X2(1) = 4.02, p = 0.045; Fig 2). The fit
of the model including developmental telomere attrition was better than the model containing
just number of heavier competitors as a predictor when the two models were run on the same
restricted data set (ΔAICc = -1.88) arguing for the retention of developmental telomere attri-
tion in our final model of the birds’ behaviour towards ambiguous stimuli. Note that the effect
of developmental telomere attrition reported here is qualitatively the same if the model is run
without number of heavier competitors included (statistics not shown). We can thus conclude
that number of heavier competitors and developmental telomere attrition appear to have inde-
pendent and opposite effects on the birds’ relative latencies to probe ambiguous stimuli.

Effects of genetic family. In all preceding analyses we included genetic family as a random
effect because we assumed that birds from the same family were likely to be more similar to
each other than birds chosen at random, but this assumption was not tested explicitly. Fig 3
shows the cognitive bias data split by family. To test whether mean speed differed between fam-
ilies, we fitted a model with speed as the dependent variable and family as a random effect.
Family explained none of the variance in speed, and there was no significant change in devi-
ance when family was dropped from the model (GLMM: X2(1) = 0.00, p = 1.000). To test
whether responses to ambiguous stimuli in particular differed between families, we fitted a
model with latency to probe (logged) as the dependent variable, speed and valence (2–4) as
fixed predictors and family and bird as nested random effects. Genetic family explained 6.4%
of the variance and there was a significant change in deviance when family was dropped from
the model (Χ2(1) = 4.78, p = 0.029), suggesting a significant effect of genetic family.

Fig 2. Effects of developmental telomere attrition on judgment bias. Latency to probe as a function of
telomere attrition score. Telomere attrition score is the difference between telomere length at d4 and d55
adjusted for regression to the mean (see methods for details); negative values correspond to greater
telomere loss. Data points are the mean ± 1s.d. of the ln latency to probe in the 24 judgment bias test trials
with ambiguous stimuli (i.e. valences 2–4) for each bird (n = 22). The solid line shows the predicted
regression line derived from the model described in the main text.

doi:10.1371/journal.pone.0132602.g002
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Comparison of the current data set with other data from the same birds
Following the experiment reported in the current paper, we went on to collect further beha-
vioural data from the same birds that are reported elsewhere. Of specific relevance to the cur-
rent results, we found that birds with greater developmental telomere attrition were also more
impulsive on a delay discounting task, showing a stronger preference for smaller but sooner
food rewards [25]. Given our finding in the current paper that greater developmental telomere
attrition appears to be associated with higher levels of optimism about potential reward, we

Fig 3. Effects of genetic family on judgment bias. Latency to probe as a function of stimulus valence for each of the 8 genetic families. Families FH6 and
P11 contained 3 birds and the other families contained 4 birds. Data are mean ± 1 s.e. latency to probe in the judgment bias test trials. The dotted lines show
the mean speed for each family (the mean of the mean latencies to probe POS and NEG). The top row of families were ‘pessimists’, meaning that their mean
latencies to probe ambiguous stimuli were predominantly greater than the mean speed and more similar to NEG, whereas the bottom row were ‘optimists’,
meaning that their mean latencies to probe ambiguous stimuli were predominantly less than the mean speed and more similar to POS.

doi:10.1371/journal.pone.0132602.g003
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sought to explore the nature of the associations between optimism/pessimism as measured by
the current cognitive bias task and the impulsivity measured in our previously published exper-
iment. We also included in this analysis the birds’mean speed to probe POS and NEG stimuli,
because this is yet another behavioural variable that appears to reflect the motivation of the
birds to access food rewards.

In order to explore the relationships between pessimism, mean speed and impulsivity we
needed a single number that provides an index of pessimism for each bird. To this end, we
computed each bird’s mean latency to probe all three intermediate stimuli and expressed this
as a proportion of the difference between its mean latencies to probe the POS and NEG stimuli:
pessimism index = (mean intermediate latency −mean POS latency)/(mean NEG latency
−mean POS latency) [40]. This pessimism index is equal to zero if a bird responds to the inter-
mediate stimuli at the same speed as to the POS stimuli, and to one if it responds to the inter-
mediate stimuli at the same speed as to the NEG stimuli; thus higher values indicate greater
pessimism about reward.

Table 4 shows the correlation matrix between the pessimism index, mean speed and impul-
sivity for the subset of birds for which we had all three behavioural variables (n = 27). Impulsiv-
ity is measured by the value, k, reported in Bateson et al. [25], where higher values of k indicate
more impulsive birds. Although none of the individual correlations is significant, the correla-
tion coefficients show that birds that are less pessimistic (i.e. relatively faster to probe ambigu-
ous stimuli) are also faster to probe POS and NEG stimuli and more impulsive on a delay
discounting task, suggestive of a single trait describing motivation to access food reward. To
test this idea, we conducted a PCA on the three variables without rotation. The Kaiser-Meyer-
Olkin (KMO) measure verified the sampling adequacy for the analysis (KMO = 0.55 which is
deemed adequate for PCA to yield distinct and reliable factors by Field [44]), and all KMO val-
ues for individual variables were also> 0.5 (again, above the acceptable limit for PCA [44]).
The PCA extracted one factor with an eigenvalue> 1 that explained 42% of the variance.
This single factor was retained in the analysis. Factor loadings were: pessimism = 0.69, mean
speed = 0.56 and impulsivity = -0.69. Thus, positive values of the factor identify animals that
were pessimistic, slow to probe trained stimuli and not impulsive about immediate reward,
whereas negative values identify animals that were optimistic, fast to probe trained stimuli and
impulsive about immediate reward. Based on these characteristics, we called the factor the
‘hunger factor’, since negative values seem to capture the behaviour of animals that are acutely
hungry.

To explore whether the hunger factor is predicted by developmental telomere attrition we
fitted a model with the hunger factor (logged) as the dependent variable and telomere length at

Table 4. Correlation matrix for pessimism index, mean speed and impulsivity.

Pessimism index Mean speed

Mean speed r = 0.11

n = 27

P = 0.580

Impulsivity r = -0.18 r = -0.11

n = 27 n = 27

P = 0.374 P = 0.590

Notes. The correlation matrix was produced for the subset of birds for which all three behavioural measures

were available (n = 27). Each cell contains: the Pearson product-moment correlation coefficient (r), the

number of birds on which the test is based (n) and the P-value for the correlation (P).

doi:10.1371/journal.pone.0132602.t004
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d4 and developmental telomere attrition (D) as fixed predictors. The data used for this analysis
were from the subset of the birds used in the PCA for which we additionally had telomere
length data (n = 19). Telomere length at d4 was not significant (GLMM: B ± se = -0.11 ± 0.12,
X2(1) = 1.00, p = 0.318), whereas telomere attrition, D, significantly predicted the hunger fac-
tor, with birds that had suffered greater developmental telomere attrition behaving as if hun-
grier (GLMM: B ± se = 0.45 ± 0.17, X2(1) = 6.42, p = 0.011; Fig 4).

Discussion
We set out to explore whether starlings’ developmental experience when they were chicks had
an impact on their mood as juveniles. We measured mood using a cognitive bias task that was
designed to measure expectations of punishment and reward when birds were presented with
ambiguous stimuli intermediate between two stimuli previously associated with punishment
and reward.

Before discussing the results obtained from the cognitive bias task, some methodological
issues relating to the design and analysis of the task need to be considered. The task we used
was based on a task originally developed for starlings by Bateson and Matheson [15]. The ratio-
nale underlying this go/no-go task was that birds would learn to probe the stimulus associated
with reward (palatable mealworm) and to avoid the stimulus associated with punishment (a
toxic, quinine-injected worm). In our previous use of this task with adult birds, the starlings
rapidly learned not to flip the lids associated with the toxic worm, as would be expected if
quinine is a punisher. However, in the current experiment the birds continued to probe the
quinine-associated stimulus and, in many cases, ate the quinine-injected worm, even after
extensive training. The fact that their latencies to probe quinine-associated stimuli were

Fig 4. Effects of developmental telomere attrition on the ‘hunger factor’. Data points are the scores
extracted by the PCA (see text for details) for each of the birds for which we also had telomere attrition data
(n = 19). Negative values of the hunger factor indicate birds with a ‘hungrier’ cognitive phenotype, whereas
positive values indicate a more sated cognitive phenotype. The solid line shows the predicted regression line
derived from a simple regression.

doi:10.1371/journal.pone.0132602.g004
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significantly greater than their latencies to probe the stimuli associated with palatable worms
rules out the possibility that they were unable to learn the discrimination, and instead suggests
that the quinine was not a punisher for the birds, perhaps because the toxic worms additionally
contained valuable nutrients such as protein and fat. This conclusion fits with previous results
showing that both acutely hungry starlings [45,46] and starlings from large broods with a
‘memory of hunger’ [42] will strategically choose to consume quinine-injected worms. The cur-
rent study took place during the period when the birds were growing their adult plumage, per-
haps explaining an increased protein requirement that was satisfied by the mealworms. The
fact that our cognitive bias task did not contain a punisher, but instead, two rewards of differ-
ing value has implications for what the task measures. If the task contained no punisher, then it
could not measure expectation of punishment, and by extension, it could not assess anxiety-
like mood. We therefore suggest that the results from the current experiment are better inter-
preted as relating to expectation of reward only, and are hence most relevant to individual dif-
ferences in depression-like moods. It is worth noting that many published cognitive bias tasks
do not contain punishers [47,40,48], therefore our task is not unique in this respect, and the
absence of a punisher in no way devalues the information provided by the task about expecta-
tion of reward.

A second methodological issue that requires discussion concerns the best method for ana-
lysing the data produced by cognitive bias experiments of this type. Gygax [29] has recently
produced a set of recommendations, and argues that it is “conceptually flawed” to analyse
responses to ambiguous stimuli separately from responses to the trained stimuli, because the
trained stimuli are needed to anchor meaningful estimates of slope across the ambiguous sti-
muli. Gygax suggests that the fitted curve should be sigmoidal and that statistical techniques
should account for censored data. We disagree with his conclusions for a number of theoretical
and pragmatic reasons. First, our hypotheses concern individual differences in responses to the
ambiguous stimuli, not the trained stimuli. Hence the analysis should focus on the ambiguous
trials. Second, the trials with ambiguous stimuli are different, because they are given at low fre-
quency, and are never reinforced, unlike the trials with the POS and NEG stimuli for which the
birds have been extensively trained. This methodological difference argues against pooling data
from the two trial types in any analysis. Third, the censoring of latency data due to probe laten-
cies exceeding the maximum trial length is greatly reduced if only data from ambiguous trials
are analysed, removing the need for analyses techniques designed for censored data [29,49].
Fourth, fitting sigmoidal curves to latency data, which is necessary to detect hypothesised
effects if all stimuli are included, is statistically complex (as acknowledged by Gygax [29]).
However, this complexity is removed if only the ambiguous trials are analysed, because differ-
ences in either the slope or intercept of straight lines can adequately capture treatment differ-
ences in cognitive bias. Finally, if there are treatment effects on how subjects respond to the
trained stimuli, as was the case in the current data set, it makes sense to control for these effects
by using the data from the trained stimuli as a covariate in the analysis of the ambiguous sti-
muli. For these reasons, we chose to analyse the birds’ responses to the ambiguous stimuli sepa-
rately from their responses to the trained stimuli in the current experiment (for a similar
approach see [40]).

We predicted that birds who had more competitors in the nest as chicks, and specifically
more heavier competitors, would display cognitive changes indicative of more negative affec-
tive states. Specifically, we predicted that these latter birds would show evidence of a lower
expectation of reward when tested with ambiguous stimuli. The results showed two distinct
effects of developmental competition that we discuss in the following two paragraphs.

The first result, which we did not anticipate, was that birds that had experienced higher
competition as chicks were faster to probe the unambiguous trained stimuli, a difference
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particularly evident for the NEG stimulus (Fig 1A). This result fits with other findings from the
same cohort of birds showing that the developmentally-disadvantaged individuals were more
prepared to eat unpalatable prey, similar to acutely hungry animals [42]. It also fits with find-
ings from rats showing that developmentally stressed animals made faster choices on a cogni-
tive bias task [31], and more generally with human epidemiological findings linking early-life
adversity with the development of impulsive behaviour patterns [50].

The effect of number of competitors on latency to probe unambiguous stimuli described
above, complicated the analysis of the cognitive bias data because it obscured differences in the
shape of the generalisation gradients obtained for the ambiguous stimuli. To explore how
developmental competition affected the birds’ responses to the ambiguous stimuli, we con-
trolled statistically for the difference in speed by including the mean latency to probe the
trained stimuli as a covariate in our models. Our second result relating the effects of develop-
mental competition was that, as predicted, the chicks with more, competitors, and specifically
more heavier competitors, showed relatively greater latencies to probe the ambiguous stimulus
most similar to the stimulus associated with reward (Fig 1B and 1D), suggestive of a relatively
lower expectation of reward. Therefore, as predicted, birds that had been disadvantaged in
early food competition, and had as a result experienced a reduced probability of reinforcement
during development, showed evidence of reduced expectation of reward as independent juve-
niles. This result supports our hypothesis that developmental experience of probability of
reward could shape adult reward response thresholds [4].

We also hypothesised that developmental telomere attrition, a putative marker of the cumu-
lative effects of developmental stress and measure of somatic ‘state’, might affect mood-related
cognition. There is growing evidence from human epidemiological studies showing an associa-
tion between shorter telomeres, pessimistic cognitive styles, and affective disorders including
generalised anxiety disorder and major depression [51,52]. These data led us to predict that
birds with greater telomere attrition would have a lower expectation of reward in the cognitive
bias task. However, whilst we found an effect of telomere attrition on birds’ responses to
ambiguous stimuli, this was in the opposite direction to that predicted: birds with greater devel-
opmental telomere attrition between d4 and d55 had higher expectations of reward. This effect
was independent of the previously described effect of number of heavier competitors. This
result, linking greater telomere attrition to a higher expectation of reward, potentially fits with
a later data set collected from the same cohort of birds in which we showed that developmental
telomere attrition predicted greater impulsivity measured using a time preference task [25].
We therefore have two pieces of evidence from these birds linking greater developmental telo-
mere attrition with altered adult decision making. To explore further the relationships between
telomere attrition, optimistic cognitive biases and impulsivity we conducted a PCA on two
ostensibly independent variables from the current experiment, mean speed to probe trained sti-
muli and the pessimism index, and k, our previously published measure of impulsivity from
the same birds [25]. This PCA yielded a single ‘hunger factor’ that was itself strongly predicted
by developmental telomere attrition, with birds that had experienced greater telomere attrition
behaving as if they were hungrier (Fig 4). This result adds strength to our conclusion that poor
somatic state, as measured via greater developmental telomere attrition, is associated with a
cognitive phenotype characteristic of acutely hungry animals. Optimality models developed
within behavioural ecology have long since predicted that animals should behave differently
depending on their state (for a review see [53]). However, exactly what ‘state’ is and how we
should measure it has been less clear. Telomere attrition is emerging as a plausible cellular bio-
marker of somatic state, and it is therefore encouraging that it appears to predict behavioural
decisions in line with the predictions of some optimality models (see also [25]). Further work
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will be needed to clarify how well telomere attrition holds up as a predictor of individual differ-
ences in decision making.

Thus, the picture arising from the cognitive bias data is complex. On the one hand, in line
with our predictions, we have evidence linking past developmental stress with increased ‘pessi-
mism’ about reward. Birds that had experienced greater competition in the nest were relatively
slower to probe ambiguous stimuli most similar to the trained stimulus associated with reward.
On the other hand, contrary to our predictions, we have evidence linking a biomarker of poor
somatic state with increased ‘optimism’ about reward. Birds with greater telomere attrition
were faster to probe ambiguous stimuli. This latter finding in particular leads us to question
whether the assumed association between expectation of reward and the valence of affective
state made in the cognitive bias literature is always valid [8,27]. Rather than seeing birds that
probe ambiguous stimuli as if they were positive stimuli as necessarily ‘optimistic’, we could
view them as desperate for reward, or as risk-prone. Theoretical models show that it can be
adaptive for animals in a poor current state to be risk-prone with regard to gaining rewards
[54,55]. The potential link between risk-prone behaviour and ‘optimism’ as measured by cogni-
tive bias tasks clearly needs further exploration.

In summary, we have shown that one measure of early-life adversity—having a larger num-
ber of competitors heavier than oneself—leads to relative ‘pessimism’, and another—telomere
attrition—is associated with relative ‘optimism’ about reward possibly better described as des-
peration or risk-proneness. We set out by identifying two factors that should theoretically
influence response thresholds for ambiguous rewards and hence the ‘pessimism’ of decisions,
namely, the estimated probability of reward and the vulnerability of the individual. We
hypothesised that both of these factors could plausibly be influenced by early-life adversity.
The results described above could be interpreted as suggesting that early disadvantage led birds
to estimate a reduced probability of reward, whereas poor somatic state led them to value food
reward more highly, hence explaining the opposing effects of the two variables on cognitive
bias.

Our data show evidence of causal links between developmental experience, somatic state,
and cognitive bias, confirming that development is important in determining adult moods (as
currently measured). However, the presence of these associations says nothing about whether
these effects are pathological or adaptive. The speed of associative learning is often used as a
sensitive measure of cognitive ability and could be used to assess whether our developmental
manipulation produced any evidence of general cognitive impairment in the birds [56–58].
The training required for the judgment bias task provides two potential measures of the speed
of associative learning: first, the number of trials taken to acquire the operant lid flipping, and
second, the number of trials taken to acquire the discrimination between stimuli associated
with palatable and toxic worms. We found no evidence for an effect of developmental experi-
ence on either of these measures. These results agree with other data sets on the same cohort of
birds [25,42], neither of which have found any evidence for an effect of early competition on
learning performance. Given the lack of evidence for impairments in learning ability, we con-
clude that the cognitive differences that we found in cognitive bias are unlikely to be symptom-
atic of general cognitive impairment, but are perhaps more likely to be adaptive responses to
subtle changes in experience or somatic state.

As a final point, the design of our brood size manipulation with quartets of siblings addi-
tionally allowed us to explore whether there were family differences in behaviour on the cogni-
tive bias task. We found no effects of genetic family on overall probing speed. However, we did
find significant effects of genetic family on cognitive biases, with some families having a more
‘optimistic’ and some a more ‘pessimistic’ cognitive style (Fig 3). These differences are indepen-
dent of the treatment and telomere effects discussed previously. Whether these differences are
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genetic in origin is impossible to determine from the current data set, but their cause must pre-
date the cross-fostering of chicks that took place on day 3.
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